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Abstract

Modeling of radiation-diffusion processes has traditionally been accomplished through
simulations based on decoupling and linearizing the basic physics equations. By applying
these techniques, physicists have simplified their model enough that problems of moderate
sizes could be solved. However, new applications demand the simulation of larger problems
for which the inaccuracies and nonscalability of current algorithms prevent solution. Recent
work in iterative methods has provided computational scientists with new tools for solving
these problems. In this paper, we present an algorithm for the implicit solution of the multi-
group diffusion approximation coupled to an electron temperature equation. This algorithm
uses a stiff ODE solver coupled with Newton’s method for solving the implicit equations aris-
ing at each time step. The Jacobian systems are solved by applying GMRES preconditioned
with a semicoarsening multigrid algorithm. By combining the nonlinear Newton iteration
with a multigrid preconditioner, we take advantage of the fast, robust nonlinear convergence
of Newton’s method and the scalability of the linear multigrid method. Numerical results
show that the method is accurate and scalable.

Keywords: multigroup diffusion, multigrid, Newton-Krylov

1 Introduction

In this paper, we present a new numerical approach to the solution of very large-scale radiation-
diffusion problems where energy can be transferred to a material through coupling terms in the
radiation equation and a material temperature equation. These problems are important in
modeling photon energy progression through an optically thick regime, a situation common
in some laser and stellar fusion applications. Traditionally, solutions for these problems have
been developed using operator split and time-lag techniques to reduce the coupled system of
nonlinear equations to the solution of a series of linear problems. These solution techniques,
however, lead to requirements of unacceptably small time steps. Furthermore, as computers
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2 Brown, Chang, Graziani, and Woodward

have become faster, researchers have attempted to simulate larger problems, despite existing
solution methods that did not scale well for increased numbers of unknowns.

For these reasons, we have developed a solution method for solving radiation-diffusion prob-
lems formulated in a fully implicit manner. The fully implicit formulation allows larger time
steps to be taken without sacrificing accuracy. Furthermore, recent work in iterative methods
has provided computational scientists with new tools for solving these problems — tools that
scale well to large numbers of unknowns. In order to solve this fully implicit formulation, we
employ ODE time integration techniques which then require an implicit solve for the solution
at each time step. We use an inexact Newton method to solve the discrete nonlinear systems
at each time step, with a preconditioned Krylov method for solving the linear Jacobian sys-
tems that arise within the Newton iterations. The Newton method provides fast nonlinear
convergence, and the Krylov method gives a robust linear solver. Our preconditioner employs
a robust, semicoarsening multigrid algorithm developed by Steve Schaffer [13, 4] which allows
for significant differences in problem parameters from one spatial zone to the next.

Implicit solutions methods for radiation-diffusion problems have recently become active
areas of research. In [10], a fully implicit formulation was examined for an integrated-in-energy
form of the equations in one dimension. In this case, it was shown that the fully implicit form
gave greater accuracy in shorter times than did traditional methods. The same authors also
considered a fully implicit form of the integrated-in-energy equations in which an equilibrium
condition was assumed and the resulting equation solved in a domain with many materials [11].
Similar advantages were seen for this fully implicit formulation. In this paper, we consider
large-scale problems in parallel using the multigroup diffusion form of radiation-diffusion where
we have an equation for each energy group, as well as one for material temperature. We show
an effective, fully implicit solution strategy for these problems.

The rest of this paper is organized as follows. In the next section, we present the equations
we are solving and the spatial and temporal discretization techniques used. In Section 3 we
detail the iterative solvers used for implicit solutions at each time step, and in Section 4 we
give some numerical results showing algorithm performance in one dimension and in three
dimensions. Section 5 provides some concluding remarks.

2 Problem Formulation and Discretization

Our model for radiation-diffusion in optically thick regimes comes from assuming isotropic
radiation and Fick’s Law of diffusion in the Boltzmann equation to give the diffusion model [1],

∂ε(ν, x)
∂t

= ∇ ·
(

1
3σT
∇ε(ν, x)

)
+ σa

(
4π

c
B(T, hν)− ε(ν, x)

)
, (1)

coupled to the material temperature equation,

∂(CvρT (x))
∂t

= −
∫ ∞

0
σa

(
4π

c
B(T, hν)− ε(ν, x)

)
d(hν), (2)

where ε is the energy density at frequency ν and position x = (x, y, z), T is the material
temperature at position x, t is time, c is the speed of light, B(T, hν) is the Planck function at
frequency ν and temperature T , ρ is the material density, Cv is the material specific heat, σT
is the total opacity, σa is the absorption opacity and h is Planck’s constant. Note that we are
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not allowing for scattering effects at this point (although we plan to add this physics later);
therefore, the total opacity and absorption opacity are equal.

The Planck function is highly nonlinear, varying over many orders of magnitude. Figure
1 shows a typical plot of the Planck function over a range of energy values for a moderate
value of temperature. In general, the Planck function peaks at the value 2.8kT where k =
8.62 × 10−5eV/K is the Boltzmann constant. For lower temperature values, the curve peaks
earlier and declines faster than that shown, and for higher values of T , the peak occurs later.
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Figure 1: Planck function for temperature = 10−3.

We divide frequency space into G cells and let εg be the approximate energy density at
the center of cell g. We employ a cell-centered discretization in frequency space to give a
series of equations for energy density at each discrete frequency and use the midpoint rule to
approximate the integral over frequencies in (2).

For spatial discretization, we use a tensor product grid with Nx, Ny and Nz cells in the x, y
and z directions, respectively. We employ cell-centered finite differences over this mesh and
write our discrete equations in terms of a discrete diffusion operator,

Lijk(εg) =

[
1

3σT,i+1/2jk

εg,i+1jk − εg,ijk
∆xi+1/2jk

− 1
3σT,i−1/2jk

εg,ijk − εg,i−1jk

∆xi−1/2jk

]
/∆xi (3)

+ y and z terms,

and a discrete source operator,

Sijk(εg, T ) = σa,ijk

(
4π

c
B(Tijk, hνg)− εg,ijk

)
. (4)

Thus, our discrete scheme is to find εg,ijk and Tijk for each g = 1, . . . , G and i = 1, . . . , Nx; j =
1, . . . , Ny; k = 1, . . . , Nz such that,

∂εg,ijk
∂t

= Lijk(εg) + Sijk(εg, T ), (5)



4 Brown, Chang, Graziani, and Woodward

∂(CvρTijk)
∂t

= −
G∑
g=1

Sijk(εg, T )∆hνg. (6)

The system of equations in (5)–(6) is a system of nonlinear, coupled, ordinary differential
equations. In order to allow for accurate time-stepping as well as larger steps than what tradi-
tional methods allow, we use an ODE time integrator to handle the temporal discretization. In
particular, we use the PVODE package [7] developed at Lawrence Livermore National Labora-
tory. This package employs the fixed leading coefficient variant of the Backward Differentiation
Formula (BDF) method [3, 9] and allows for variation in the order of the time discretization as
well as in the time step size. Time step sizes are chosen to minimize the local truncation error,
and thus give a solution that obeys a user-specified accuracy bound.

The general form of the BDF method for solving the system of ODEs, ẏ = f(t, y), is given
by,

yn =
q∑
j=1

αjyn−j + ∆tnβ0f(tn, yn), (7)

where q is the order of the method, αj is a constant dependent on the order of the method and
the values of previous time steps, β0 is a constant depending only on the order of the method
and ∆tn = tn− tn−1 is the time step. Thus, an implicit solve for yn is required at each discrete
time, tn. In our case, yn is composed of energy densities for each frequency and spatial cell and
of material temperatures for each cell.

3 Solution Techniques

In this section, we present the solution techniques we use to solve the implicit, nonlinear prob-
lems for each discrete time.

Inexact Newton Method

We use an inexact Newton method to solve the nonlinear systems. In this method, the linear
Jacobian system is solved only approximately. Suppose we want to solve the nonlinear equation,

F (u) = 0. (8)

Let u∗ be the true solution of (8), and let F ′
(
uk
)

denote the Jacobian of the nonlinear function,
F , at the kth approximation step. Then, Algorithm 3.1 describes an inexact Newton method
applied to equation (8).

Algorithm 3.1
1. Let u0 be an initial guess.

2. For k = 0, 1, 2, . . . until convergence, do

(a) Using some method, compute a vector sk satisfying

F ′(uk)sk = −F (uk) + rk, (9)

where rk is the error from the linear system solve.



Implicit Radiation-Diffusion 5

(b) Set uk+1 = uk + sk.

In general, the standard Newton method gives quadratic convergence once the iterates to the
solution fall within the radius of convergence for the sequence of iterates. For inexact Newton
methods, we are guaranteed at least linear convergence to u∗ under the condition that the linear
system (9) is solved so that

‖rk‖ ≤ η‖F (uk)‖, (10)

for all k, where η ≤ ηmax < 1 [8]. However, heuristic arguments given in [5] for the case of
nonlinear systems arising in the context of implicit ODE integrators show that convergence
obeys the relation,

‖uk+1 − u∗‖ ≤ Ck‖uk+1 − uk‖(1 + ε), (11)

where,

Ck = ‖uk+1 − uk‖/‖uk − uk−1‖, and ε > 0, (12)

as long as ‖rk‖ ≤ δ for some δ sufficiently small.
The ODE integrator we employ, PVODE, uses a predictor-corrector form of the BDF meth-

ods. When solving stiff ODEs, the largest errors from the predictor step are typically in the
stiff components. Thus, the corrector, which invokes the inexact Newton method, needs only to
reduce errors in the stiff components in order to find the solution [5]. For this reason, PVODE
uses a linear solver stopping condition of the form,

‖P−1rk‖wrms ≤ 0.05 C (13)

where C is a constant between 0 and 1 related to the order of the ODE method, P is the left
preconditioner, and ‖ · ‖wrms is the weighted root mean square norm,

‖x‖wrms =
‖Wx‖2√

N
, (14)

for a vector x of length N . This residual stopping criteria is chosen so that the error in the
solution to the ODE system arising from the linear solver is at most 5% of the error allowed in
the local integration error test. The weighting matrix, W , is diagonal with components given
by,

Wii =
1

RTOL|yi|+ ATOLi
, (15)

where RTOL is the requested relative tolerance, and ATOLi is the requested absolute tolerance
for solution component yi. By applying this weighting vector to norm calculations, we have a
mechanism for handling scaling of unknowns within the ODE system. The root mean square
norm is used here in order to increase the ODE integrator’s scalability. As the problem size
increases, the length of the solution vector increases causing the l2 norm of that vector to
increase and making the problem seem “harder” to solve. By dividing by the length of the
vector, we offset some of this extra penalty.
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Krylov Linear Solver

To solve the linear Jacobian systems at each Newton iteration, we use a Krylov iterative method.
Combined with an inexact Newton method, these schemes are called Newton-Krylov methods.
One big advantage of these methods is that the Krylov linear solver does not require knowledge
of the matrix. Only the action of that matrix on vectors is needed. Since the system matrix
is actually the Jacobian of the nonlinear function, this action can be approximated by taking
differences of the nonlinear function of the form,

F ′(u)v ≈ F (u + θv)− F (u)
θ

, (16)

where θ is a scalar. Thus, only the implementation of the nonlinear function is necessary, and
matrix entries need never be formed or stored.

As our Krylov solver, we use GMRES [12]. Brown showed that an inexact Newton method
using GMRES as the linear solver with finite differences as in (16) and the θ’s chosen small
enough, converges locally with the estimate for k = 0, 1, . . .,

‖uk+1 − u∗‖∗ ≤ α‖uk − u∗‖∗, (17)

where ‖ · ‖∗ = ‖J(u∗) · ‖2, α < 1 is given and η < α is used as in (10) [2]. However, heuristic
arguments for the case of systems arising from the implicit integration of ODEs show that θ = 1
works quite well [5], and that is the choice we use in our code.

The main advantage of using GMRES over other Krylov methods is that in the absence of
roundoff error, the residual norm is nondecreasing with each iteration. However, the iteration
can stagnate, and preconditioning is needed to enhance the robustness of the method.

Block Jacobi Preconditioner

We use a block Jacobi preconditioner on the left for our ODE Jacobian system. The Jacobian
matrices are of the general form (I −∆tβ0J), where J = ∂f

∂y is the Jacobian of the nonlinear
function, f , and the parameters ∆t and β0 are the current time step value and the order of
the ODE integrator (see (7)). We impose an ordering of unknowns first by frequency and then
by space within each frequency group. Equations are ordered in a similar manner. Recalling
the definitions of the discrete divergence and source operators, defined in (3) and (4), the block
form of the Jacobian of f is,

J =



∂L(ε1)
∂ε1

+ ∂S(ε1,T )
∂ε1

γ1 0 . . . . . . 0 ∂S(ε1,T )
∂T γ1

0
. . . . . .

...
...

...
. . .

...
...

... 0
...

0 . . . . . . 0 ∂L(εG)
∂εG

+ ∂S(εG,T )
∂εG

γG
∂S(εG,T )

∂T γG

−∂S(ε1,T )
∂ε1

γ1 . . . . . . . . . −∂S(εG,T )
∂εG

γG −∑G
g=1

∂S(εg ,T )
∂T γg


,

where γg = h∆νg
ρCv

.
We precondition the Jacobian system with a block Jacobi preconditioner, ignoring cou-

plings between the energy density and material temperature equations. So, an application of
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the preconditioner involves inverting blocks consisting of the discrete diffusion operator and
a contribution of local physics and blocks consisting of the derivative of the discrete source
operator. These last blocks are diagonal and are easily inverted. Since multigrid methods are
particularly effective on diffusion operators, and because they tend to be algorithmically scal-
able, we use a multigrid algorithm to invert the diagonal blocks corresponding to the energy
density equations.

Semicoarsening Multigrid

We use the semicoarsening multigrid algorithm developed by Steve Schaffer [13] and the parallel
implementation of this algorithm by Brown, Falgout and Jones [4]. This algorithm uses a com-
bination of semicoarsening, plane-relaxation and operator-based interpolation. For simplicity,
we describe the algorithm in two dimensions and comment on the extension to three dimensions
subsequently.

We consider grouping the unknowns along each line on the spatial grid and denoting each
line as either red or black with the colors alternating. Then, we consider coarsening in the
y direction and let the unknowns with indices in the set {(i, j), j odd} be “red” unknowns
and be used for the coarse grid. All remaining unknowns are “black” unknowns. This type of
coarsening is semicoarsening, as the grid is coarsened in only one direction at a time and not all
three, as in standard multigrid algorithms. Relaxation is done on the fine grid by performing
red/black line relaxation where a tridiagonal solve for the equations over a line is conducted
for each line.

The interpolation operator is motivated by the relationship of the error on red and black
lines after a black line relaxation sweep. To see the relationship, let,

Gj,j−1ej−1 + Gj,jej + Gj,j+1ej+1 = 0, (18)

be the error equation after relaxing on the block of equations for the jth line. Thus, the error
on line j is related to the error on the neighboring red lines by,

ej = −G−1
j,jGj,j−1ej−1 −G−1

j,jGj,j+1ej+1. (19)

This relationship shows exactly how to interpolate the error on the black lines from that on
the red lines. However, since G−1

j,j is not sparse, the error at a point on a black line is coupled
to the error on all points on the two red lines bordering the black line on which the point
lies. We thus have a full interpolation operator, and we would prefer to have, instead, a sparse
interpolation operator. We replace the operators, G−1

j,jGj,j−1 and G−1
j,jGj,j+1 with diagonal

matrices having the same action on constant vectors as these operators. Constant vectors are
used in this approximation since they best approximate the smoothest error. The transpose of
this interpolation operator is used for restriction, and the Galerkin operator is used to generate
the coarse grid operator. Thus, the coarse operator is the product of restriction, the fine grid
operator, and prolongation (RAP).

In three dimensions, we group unknowns by planes and apply one V-cycle of the 2-D algo-
rithm for the plane relaxation. Everything else is the same.

All these components are then put together in a standard V-cycle as our preconditioner for
each energy equation block. Note that we apply only one V-cycle per frequency group per call
to the preconditioner.
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Recalculation of the Preconditioner

The matrix coefficients and multigrid interpolation operators used in the preconditioner are not
recomputed for each Newton iteration. They are only recomputed when one of the following
three criteria are met:

1. The Newton iteration fails to converge.

2. More than 20 time steps have passed since the last recomputation.

3. The relative change in ∆t ∗ β, where ∆t is the time step value and β is related to the
order of the ODE method (see (7)), is greater than 0.3.

As a result of these criteria, we find that the preconditioner is not recomputed very often. For
more information on how these criteria were chosen, see [6].

4 Numerical Results

In this section, we present numerical results of applying our solution techniques to a radiation-
diffusion test case from the literature. We look at both the accuracy of the method and the
scalability of the solution algorithm.

Before we begin, however, we discuss scalability and the reasons to employ scalable algo-
rithms. Our goal is to solve very large-scale problems. We therefore examine the algorithmic
and implementation scalability of the solution techniques described above. A parallel code is
considered scalable if the time to solve a problem with kN unknowns on k processors, T (kN, k),
is equal to the time to solve the same problem but with N unknowns on 1 processor, T (N, 1).
So, we are looking at scaling up the number of unknowns as we add more processors. One
metric used to determine whether a code is scalable is scaled efficiency, E, given by

E =
T (N, 1)
T (kN, k)

. (20)

A scalable code will have scaled efficiency equal to 1.
In the context of iterative methods, we can look at algorithmic and implementation scalabil-

ities separately. Both must be present for a parallel code to be scalable. Algorithmic scalability
means that the work per iteration is O(N), where N is the number of unknowns. In addition,
the number of iterations must stay fixed as problem size increases. Implementation scalability
means that the time to complete each iteration does not increase as the number of unknowns
and processors increases.

Results in One Dimension

We use as our test case the one-dimensional Marshak two-temperature problem given in [14].
This problem is useful since a known analytical solution exists. The solution is given for an
integrated-in-energy form of the multigroup diffusion equations where,

E(x, t) =
∫ ∞

0
ε(x, t, ν)dν, (21)∫ ∞

0
B(T, hν)dν = aT 4, (22)
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where a is the Stefan-Boltzmann constant and E is the total energy. The equations can then
be given as,

∂E(x)
∂t

= ∇ ·
(

1
3σT
∇E(x)

)
+ σa

(
caT 4 − E(x)

)
, (23)

∂(CvρT (x))
∂t

= −σa
(
caT 4 − E(x)

)
. (24)

This system is a special case of our code when we take B = c
4πaT 4 and use a single frequency

group. The problem starts with a homogeneous initial condition for the total energy and the
material temperature. A Robin boundary condition of the form,

E(0, t)−
(

2
3σT

)
∂E(0, t)

∂x
= 1, (25)

is applied at x = 0, and a homogeneous Dirichlet condition is applied at x = ∞. In practice,
this right-hand boundary condition is applied at x = 20. Both the total and absorption opacities
are taken to be 1.0.

Table 1 shows the absolute values (at steady state) of the differences between the computed
and true radiation energy density and between the computed and true material temperature
at the point x = 0.1. We note that because we are using the integrated-in-energy form of the
equations, discretization in frequency is exact for this study. Each time the spatial mesh is
doubled, the errors decrease by about half, indicating a spatial convergence rate of first order.

Table 1: Steady state spatial convergence data for the radiation energy density and material
temperature at x = 0.1.

Nx Error in Radiation Error in Material
Energy Density Temperature

200 5.0131e-3 5.1058e-3
400 2.5077e-3 2.5491e-3
800 1.2523e-3 1.2754e-3

1,600 6.2865e-4 6.4669e-4
3,200 3.1046e-4 3.1261e-4
6,400 1.5638e-4 1.5832e-4

12,800 7.7058e-5 7.8280e-5
25,600 3.6030e-5 1.4479e-5

We now use the original multigroup form of the equations to study the convergence of the
frequency discretization. In this study we maintained a constant spatial mesh of 1, 600 cells,
and considered adding more frequency groups. For each case, we took a discrete integral in
frequency of the results and compared it against the integrated-in-energy results in the paper.
Table 2 shows the same errors as above for this study. We see that as we increase the number
of frequency groups, the errors decrease rapidly. This decrease is due to the enhanced ability
of the finer-frequency mesh to approximate the Planck function.

Table 3 shows the number of time steps taken to achieve steady state, various iteration
counts, and the total compute time for decreasing the spatial mesh size and using the integrated-
in-energy form of the equations. Table 4 shows the ratios of the number of nonlinear iterations
taken per time step and of the number of linear iterations taken per nonlinear iteration for this
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Table 2: Steady state frequency convergence data for the radiation energy density and material
temperature at x = 0.1.

Number of Error in Radiation Error in Material
Groups Energy Density Temperature

1 5.0829e-1 5.9554e-0
2 5.0829e-1 5.9565e-0
4 4.4791e-1 5.5485e-0
8 1.5694e-1 2.5529e-0
16 3.4806e-2 6.2044e-1
32 6.6201e-3 2.7597e-1
64 6.8513e-3 1.6849e-1
128 1.4495e-4 1.3709e-2

study. As predicted above, only a few nonlinear iterations are required to converge the solution
to the discrete time step. In addition, the ratio of the number of nonlinear iterations to the
number of time steps remains fairly constant as the number of unknowns increases, indicating
algorithmic scalability of the nonlinear iteration. Similarly, we see that the number of linear
iterations required to converge the solution to the nonlinear iteration is very few, and that the
ratio of the number of linear iterations to the number of nonlinear iterations also stays relatively
constant as the problem size increases. Thus, algorithmic scalability is seen for both the linear
and nonlinear iterations.

The number of time steps taken to solve for the same final time increases as the problem
size increases. We believe this is due to a boundary layer effect. As more spatial cells are added,
the discontinuity between the initial state at the first interior cell and the boundary value is
refined. Initially, the ODE integrator takes smaller time steps to move past this discontinuity.

The numbers of preconditioner evaluations given in Table 3 shows that we are able to amor-
tize the cost of preconditioner evaluation by using the same preconditioner for many time steps.
We also see that as we double the number of unknowns, the total compute time approximately
doubles. This last fact indicates that the implementation is scalable in a sequential sense.

Table 3: Total time steps, iteration counts and compute time data for spatial refinement study.
Iteration counts indicate algorithmic scalability, and total compute times show implementation
scalability.

Nx Time Nonlinear Linear Preconditioner Preconditioner Time (sec)
Steps Iterations Iterations Evaluations Solves

200 464 503 684 49 1,152 8.82
400 509 555 778 56 1,294 22.44
800 555 588 774 59 1,334 46.52

1,600 581 614 815 55 1,401 83.65
3,200 644 680 897 59 1,551 190.29
6,400 624 670 859 60 1,504 352.61

12,800 632 670 891 62 1,531 751.38
25,600 717 748 997 64 1,732 1,614.67
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Table 4: Iteration count ratios for spatial refinement study.
Nx Nonlinear Iterations Linear Iterations

Per Time Step Per Nonlinear Iteration
200 1.08 1.36
400 1.09 1.40
800 1.06 1.32

1,600 1.06 1.33
3,200 1.06 1.32
6,400 1.07 1.28

12,800 1.06 1.33
25,600 1.04 1.33

Results in Three Dimensions

As our three-dimensional test case, we extend the one-dimensional problem described above by
applying the same Robin boundary condition on the lower side for each of the y and z directions
and a homogeneous Dirichlet condition on the upper side for each of the y and z directions.
We used the integrated-in-energy form of the equations and ran to time 1, 000 for all cases.

Table 5 shows results from a scaled speedup study on the IBM SP2 (Technical Refresh)
machine at Lawrence Livermore National Laboratory. In this case, we kept a constant number
of spatial cells on each processor (50 × 50 × 50) and scaled up the problem by adding more
processors. From the table, one sees that as we add more processors (and correspondingly,
more unknowns), we see some increase in the number of time steps required to reach the final
time. This may be due to the boundary effect described above. We also see corresponding
increases in the number of nonlinear and linear iterations required for convergence. Table 6
shows the ratios of the number of nonlinear iterations taken per time step and of the number
of linear iterations taken per nonlinear iteration for this study. Again, we see that these ratios
hold relatively constant, indicating reasonable algorithmic scalability.

Table 5: Total time steps and iteration counts for parallel scalability study with 125, 000 spatial
cells per processor (2 unknowns at each cell).

Number of Topology Total Time Nonlinear Linear Preconditioner
Processors Unknowns Steps Iterations Iterations Evaluations

1 1× 1× 1 250,000 416 462 646 57
2 2× 1× 1 500,000 525 554 759 58
4 2× 2× 1 1,000,000 571 606 897 58
8 2× 2× 2 2,000,000 496 529 736 54

16 4× 2× 2 4,000,000 614 647 960 60
32 4× 4× 2 8,000,000 473 507 700 55
64 4× 4× 4 16,000,000 508 541 765 55

128 8× 4× 4 32,000,000 696 734 944 66

Figure 2 shows the scaled efficiency for this study. We see that the scaled efficiency de-
grades, ending at about 50% at 128 processors. We believe that this degradation is due to
the nonlinearities in the problems we are solving. As we refine the mesh, we also refine the
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Table 6: Iteration count ratios for parallel scalability study.
Processors Nonlinear Iterations Linear Iterations

Per Time Step Per Nonlinear Iteration
1 1.11 1.40
2 1.06 1.37
4 1.06 1.48
8 1.07 1.39

16 1.05 1.48
32 1.07 1.38
64 1.06 1.41

128 1.05 1.29

nonlinearity. To see if we are scaling well for the linear iterations, we plotted the scaled ef-
ficiency of the time per linear iteration (the total run time divided by the number of linear
iterations). Figure 3 shows this plot, and we see about 72% scaled efficiency at 128 processors.
This measure, however, takes the ODE integrator time into consideration, so we expect that
the linear iterations scale better than what is shown.
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Figure 2: Scaled efficiency of the full run for 503 spatial cells on each processor.

5 Conclusions

We have developed a new solution technique for a fully implicit formulation of the multigroup
diffusion equations. This technique is particularly appropriate for large-scale, parallel problems
in which algorithmic and implementation scalability are essential. Numerical results show that
our method is accurate in both space and frequency discretization.

On a one-dimensional test problem, the solution technique showed both algorithmic and
implementation scalability. On a three-dimensional test problem, the method showed reasonable
parallel scalability for the linear iterations and showed degraded parallel scalability for the full
run. We are currently investigating scalability issues in the context of nonlinear problems.
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Figure 3: Scaled efficiency of the linear iterations for 503 spatial cells on each processor.

In future work, we plan to compare this solution method to the traditional approaches for
solving this problem. We expect significant increases in accuracy and computation speed by
using this method over the more common time-lagging and operator-splitting approaches.

Acknowledgments The authors wish the thank Alan C. Hindmarsh for his helpful comments
throughout the development of the code and the writing of this paper. This work was per-
formed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract number W-7405-Eng-48.

References

[1] R. L. Bowers and J. R. Wilson, Numerical Modeling in Applied Physics and Astro-
physics, Jones and Bartlett, Boston, 1991.

[2] P. N. Brown, A local convergence theory for combined inexact-Newton/finite difference
projection methods, SIAM J. Numer. Anal., 24 (1987), pp. 407–434.

[3] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE: A variable-coefficient
ODE solver, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 1038–1051.

[4] P. N. Brown, R. D. Falgout, and J. E. Jones, Semicoarsening multigrid on dis-
tributed memory machines. Submitted to the SIAM Journal on Scientific Computing spe-
cial issue on the Fifth Copper Mountain Conference on Iterative Methods. Also available
as LLNL technical report UCRL-JC-130720, 1998.

[5] P. N. Brown and A. C. Hindmarsh, Matrix-free methods for stiff systems of ODE’s,
SIAM J. Num. Anal., 23 (1986), pp. 610–638.

[6] , Reduced storage matrix methods in stiff ODE systems, J. of Appl. Math. and Comp.,
31 (1989), pp. 40–91.



14 Brown, Chang, Graziani, and Woodward

[7] G. D. Byrne and A. C. Hindmarsh, PVODE, an ODE solver for parallel computers,
Tech. Rep. UCRL-JC-132361, Lawrence Livermore National Laboratory, 1998. Submitted.

[8] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J.
Sci. Statist. Comput., 19 (1982), pp. 400–408.

[9] K. R. Jackson and R. Sacks-Davis, An alternative implementation of variable step-size
multistep formulas for stiff ODEs, ACM Trans. Math. Software, 6 (1980), pp. 295–318.

[10] D. A. Knoll, W. J. Rider, and G. L. Olson, An efficient nonlinear solution method
for nonequilibrium radiation diffusion, Tech. Rep. LA-UR-98-2154, Los Alamos National
Laboratory, 1998. Submitted to J. Quant. Spec. and Rad. Trans.

[11] W. J. Rider, D. A. Knoll, and G. L. Olson, A multigrid Newton-Krylov method
for multimaterial radiation diffusion, Tech. Rep. LA-UR-98-2153, Los Alamos National
Laboratory, 1998. Submitted to J. Comp. Phys.

[12] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.

[13] S. Schaffer, A semicoarsening multigrid method for elliptic partial differential equations
with highly discontinuous and anisotropic coefficients, SIAM J. on Sci. Comp., 20 (1998),
pp. 228–242.

[14] B. Su and G. L. Olson, Benchmark results for the non-equilibrium Marshak diffusion
problem, J. Quant. Spec. and Rad. Trans., 56 (1996), pp. 337–351.

Peter N. Brown
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
P.O. Box 808, L-561
Livermore, CA 94551 USA
brown42@llnl.gov

Britton Chang
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
P.O. Box 808, L-561
Livermore, CA 94551 USA
chang1@llnl.gov

Frank Graziani
Low Energy Density Physics
Lawrence Livermore National Laboratory
P.O. Box 808, L-098
Livermore, CA 94551 USA
graziani1@llnl.gov

Carol S. Woodward
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
P.O. Box 808, L-561
Livermore, CA 94551 USA
cswoodward@llnl.gov


